Embedded eigenvalues of generalized Schrödinger operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous Dependence of the Eigenvalues of Generalized Schrr Odinger Operators

A modiied deenition of a-eigenvalue is introduced where is a nonnegative measure in the local Kato class. Dependence of the-eigenvalues of ?4+, where is a positive measure on the domain and on the measure are investigated. It is also proved that the smallest-eigenvalue is non degenerate with positive associated-eigenfunction.

متن کامل

Arithmetic Properties of Eigenvalues of Generalized Harper Operators on Graphs

Let Q denote the field of algebraic numbers in C. A discrete group G is said to have the σ-multiplier algebraic eigenvalue property, if for every matrix A ∈ Md(Q(G,σ)), regarded as an operator on l(G), the eigenvalues of A are algebraic numbers, where σ ∈ Z(G,U(Q)) is an algebraic multiplier, and U(Q) denotes the unitary elements of Q. Such operators include the Harper operator and the discrete...

متن کامل

Discrete and Embedded Eigenvalues for One-dimensional Schrödinger Operators

I present an example of a discrete Schrödinger operator that shows that it is possible to have embedded singular spectrum and, at the same time, discrete eigenvalues that approach the edges of the essential spectrum (much) faster than exponentially. This settles a conjecture of Simon (in the negative). The potential is of von Neumann-Wigner type, with careful navigation around a previously iden...

متن کامل

Convergence of Schrödinger Operators

For a large class, containing the Kato class, of real-valued Radon measures m on R the operators −∆ + ε∆ + m in L(R, dx) tend to the operator −∆ +m in the norm resolvent sense, as ε tends to zero. If d ≤ 3 and a sequence (μn) of finite real-valued Radon measures on R converges to the finite real-valued Radon measure m weakly and, in addition, supn∈N μ ± n (R) < ∞, then the operators −∆ + ε∆ + μ...

متن کامل

On the number of eigenvalues of Schrödinger operators with complex potentials

We study the eigenvalues of Schrödinger operators with complex potentials in odd space dimensions. We obtain bounds on the total number of eigenvalues in the case where V decays exponentially at infinity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Spectral Theory

سال: 2020

ISSN: 1664-039X

DOI: 10.4171/jst/298